Skip to content

AI Monitor (ai-monitor) — Workflow Guide

File Information

Property Value
Binary Name ai-monitor
Version 9.0.1
File Size 2.6MB
Author Warith Al Maawali
License Proprietary
Category AI & Intelligence
Description Proactive system monitoring daemon with anomaly detection and suggestions
JSON Data View Raw JSON

SHA256 Checksum

1f8ec9f35a02304a92c7fad3427eabcd72333b2293f2f1574328f8a47603eca1

What ai-monitor Does

ai-monitor is a background daemon that continuously monitors system security, network health, VPN/Tor status, and DNS leaks. When it detects issues, it generates actionable suggestions with specific fix commands. It integrates with ai-scheduler for automated responses.

Key Capabilities

Feature Description
VPN Monitoring Tracks VPN connection status and health
Tor Monitoring Monitors Tor circuit health and performance
DNS Leak Detection Continuous DNS leak scanning
Security Scoring Real-time system security score tracking
Suggestion Engine Proactive fix recommendations with commands
Service Management Install as systemd service for auto-start
AI Tier Health Monitors availability of all 6 AI engine tiers (TF-IDF, ONNX, Mistral.rs, Ollama, LLM, Claude) — requires all tiers installed

Monitoring Categories

Category What It Monitors Check Interval
Security System score, file integrity, hardening 60 seconds
Network VPN status, connectivity, routing, Tor, DNS 30 seconds
Recovery System recovery state, backup status 60 seconds
Optimization Performance tuning, resource usage 60 seconds

Scenario 1: Setting Up Always-On Security Monitoring

Deploy ai-monitor as a persistent background service and combine with ai-scheduler for complementary automated checks.

# Step 1: Start the monitoring daemon
sudo ai-monitor start --daemon

# Step 2: Verify it's running
ai-monitor status

# Step 3: Install as systemd service so it survives reboots
sudo ai-monitor service install

# Step 4: Verify service is active
ai-monitor service status

# Step 5: Check if any suggestions have been generated
ai-monitor suggestions

# Step 6: Set up ai-scheduler to complement monitoring
ai-scheduler add --name "dns-check" \
  --command "dns-leak test" \
  --cron "0 */6 * * *"

ai-scheduler add --name "tor-health" \
  --command "tor-switch new-circuit" \
  --cron "0 */2 * * *"

ai-scheduler add --name "security-score" \
  --command "health-control sec-score" \
  --cron "0 0 * * *"

# Step 7: Verify both systems are running
ai-monitor status --json
ai-scheduler list

Cross-binary workflow: ai-monitor + ai-scheduler + dns-leak + tor-switch + health-control

Result: System security is monitored 24/7 with automated scheduled checks running alongside.


Scenario 2: Responding to Security Suggestions

When ai-monitor detects issues, review and act on suggestions across multiple security binaries.

# Step 1: Check all current suggestions
ai-monitor suggestions

# Example output:
# [HIGH] DNS leak detected - Your DNS queries are leaking outside the VPN
#   Fix: dns-switch secure
# [MEDIUM] Security score: 72/100 - Below recommended threshold
#   Fix: health-control sec-harden --full
# [LOW] Tor circuit age: 4 hours - Consider rotation
#   Fix: tor-switch new-circuit

# Step 2: Filter by category to focus on critical issues
ai-monitor suggestions --category security
ai-monitor suggestions --category network

# Step 3: Execute the suggested fix commands
dns-switch secure
health-control sec-harden --full
tor-switch new-circuit

# Step 4: Mark fixed suggestions as resolved
ai-monitor suggestions --resolve 1
ai-monitor suggestions --resolve 2
ai-monitor suggestions --resolve 3

# Step 5: Dismiss suggestions that don't apply
ai-monitor suggestions --dismiss 4

# Step 6: Clean up old resolved/dismissed suggestions
ai-monitor suggestions --cleanup

# Step 7: Verify all suggestions resolved
ai-monitor suggestions
# Should show: "No active suggestions"

Cross-binary workflow: ai-monitor + dns-switch + health-control + tor-switch


Scenario 3: Network Issue Detection and Resolution

Use ai-monitor with network diagnostic binaries to detect and fix network problems.

# Step 1: Check network-specific suggestions
ai-monitor suggestions --category network

# Example output:
# [HIGH] VPN connection lost - No active VPN detected
#   Fix: routing-switch vpn --reconnect
# [MEDIUM] DNS leak detected - 3 non-VPN DNS queries observed
#   Fix: dns-leak test && dns-switch secure
# [LOW] Tor circuit performance degraded - High latency detected
#   Fix: tor-switch new-circuit

# Step 2: If VPN is down - diagnose and fix
routing-switch status                  # Check current routing
routing-switch vpn --reconnect         # Reconnect VPN
ai-monitor suggestions --resolve 1     # Mark as resolved

# Step 3: If DNS leak detected - diagnose and fix
dns-leak test                          # Confirm the leak
dns-switch status                      # Check DNS configuration
dns-switch secure                      # Fix DNS configuration
dns-leak test                          # Verify fix
ai-monitor suggestions --resolve 2     # Mark as resolved

# Step 4: If Tor circuit is unhealthy - diagnose and fix
tor-switch tor-status                  # Check Tor status
tor-switch new-circuit                 # Get new circuit
ai-cmd query "check tor status"        # Verify via AI
ai-monitor suggestions --resolve 3     # Mark as resolved

# Step 5: Verify all network issues resolved
ai-monitor suggestions --category network
# Should show: "No active suggestions"

# Step 6: Check overall status with JSON output
ai-monitor status --verbose --json

Cross-binary workflow: ai-monitor + routing-switch + dns-leak + dns-switch + tor-switch + ai-cmd


Scenario 4: Custom Monitoring Configuration

Configure ai-monitor with custom intervals and thresholds for different security scenarios.

# Scenario 4A: High-security mode with aggressive monitoring
sudo ai-monitor start --interval 30 --threshold 90

# Explanation:
# --interval 30     Check every 30 seconds (default: 60)
# --threshold 90    Alert when security score drops below 90 (default: 80)

# Scenario 4B: Run in foreground for debugging
sudo ai-monitor start --interval 60 --threshold 80

# Watch real-time monitoring logs in terminal (non-daemon mode)
# Press Ctrl+C to stop

# Scenario 4C: Low-resource mode with relaxed monitoring
sudo ai-monitor start --daemon --interval 120 --threshold 70

# Scenario 4D: Combine with ai-scheduler for complementary checks
sudo ai-monitor start --daemon --interval 60 --threshold 85

ai-scheduler add --name "hourly-network-check" \
  --command "health-control net-check" \
  --cron "0 * * * *"

ai-scheduler add --name "daily-integrity" \
  --command "integrity-check check-all" \
  --cron "0 3 * * *"

# Scenario 4E: Check monitoring configuration and status
ai-monitor status --verbose
ai-monitor status --json  # JSON output for integration with other tools

# Scenario 4F: Adjust monitoring for specific categories
ai-monitor suggestions --category security     # Focus on security issues
ai-monitor suggestions --category network      # Focus on network issues
ai-monitor suggestions --category optimization # Focus on performance
ai-monitor suggestions --category recovery     # Focus on recovery state

Cross-binary workflow: ai-monitor + ai-scheduler

Use cases: - High-security: --interval 30 --threshold 90 for maximum protection - Debugging: Foreground mode without --daemon to see real-time logs - Low-resource: --interval 120 --threshold 70 for older hardware - Balanced: --interval 60 --threshold 80 (default) for most users


Scenario 5: Automated Monitoring + Scheduling Pipeline

Combine ai-monitor with ai-scheduler for fully automated security maintenance across all whitelisted binaries.

# Step 1: Start the monitoring daemon
sudo ai-monitor start --daemon --interval 60 --threshold 80
sudo ai-monitor service install

# Step 2: Start the scheduler daemon
sudo ai-scheduler start

# Step 3: Schedule complementary security checks
ai-scheduler add --name "dns-leak-check" \
  --command "dns-leak test" \
  --cron "0 */6 * * *"

ai-scheduler add --name "tor-circuit-rotate" \
  --command "tor-switch new-circuit" \
  --cron "0 */2 * * *"

ai-scheduler add --name "security-score" \
  --command "health-control sec-score" \
  --cron "0 0 * * *"

ai-scheduler add --name "network-check" \
  --command "health-control net-check" \
  --cron "*/30 * * * *"

ai-scheduler add --name "integrity-verify" \
  --command "integrity-check check-all" \
  --cron "0 6 * * *"

ai-scheduler add --name "daily-learning" \
  --command "ai-learner learn --incremental" \
  --cron "0 2 * * *"

# Step 4: Verify all tasks
ai-scheduler list
ai-monitor status

Result: A comprehensive automated security pipeline:

Time Action Binary
Continuous Monitor VPN/Tor/DNS/Security ai-monitor
Every 30 min Network health check health-control
Every 2 hours Tor circuit rotation tor-switch
Every 6 hours DNS leak test dns-leak
2:00 AM daily AI learning cycle ai-learner
Midnight daily Security score check health-control
6:00 AM daily Integrity verification integrity-check

Cross-binary workflow: ai-monitor + ai-scheduler + dns-leak + tor-switch + health-control + integrity-check + ai-learner


Scenario 6: Investigating Persistent Security Issues

When suggestions keep recurring, investigate the root cause with deep diagnostics across multiple binaries.

# Step 1: Check recurring suggestions with JSON output
ai-monitor suggestions --json > /tmp/recurring-issues.json

# Step 2: If DNS leak keeps appearing, investigate deeper
dns-leak test --json                    # Detailed leak test
dns-switch status                       # Check DNS configuration
ai-admin diagnostics --full             # Check overall system health

# Example root cause: DNS server is bypassing VPN
dns-switch secure                       # Apply secure DNS
systemctl restart NetworkManager        # Restart network manager
sleep 60                                # Wait for monitoring cycle
ai-monitor suggestions --category network  # Verify leak stopped

# Step 3: If security score stays low, investigate components
health-control sec-score --verbose      # Detailed score breakdown
# Example output:
# System Hardening: 65/100 (FAIL)
# Privacy Config: 80/100 (PASS)
# Network Security: 70/100 (WARNING)
# Authentication: 90/100 (PASS)

health-control sec-harden --full        # Apply hardening
sleep 120                               # Wait for monitoring cycle
ai-monitor suggestions --category security  # Verify score improved

# Step 4: If network issues persist, deep network diagnostics
routing-switch status                   # Check routing configuration
ip-fetch                                # Verify external IP
tor-switch tor-status                   # Detailed Tor status
ai-cmd query "diagnose network connectivity"  # AI-assisted diagnosis

# Example root cause: VPN server is down
routing-switch vpn --change-server      # Switch VPN server
routing-switch status                   # Verify new server
ai-monitor suggestions --resolve 1      # Mark as resolved

# Step 5: After fixing root cause, clean up old suggestions
ai-monitor suggestions --cleanup

# Step 6: Verify the fix persists (check again after monitoring interval)
sleep 120 && ai-monitor suggestions --category network
sleep 120 && ai-monitor suggestions --category security

# Step 7: Use optimization category to improve system performance
ai-monitor suggestions --category optimization
# Example output:
# [INFO] High memory usage detected - Consider closing unused applications
# [INFO] Disk space low - Run cleanup operations

ai-monitor suggestions --category recovery
# Example output:
# [WARNING] No recent backup detected - Consider running backup

Cross-binary workflow: ai-monitor + dns-leak + dns-switch + health-control + ai-admin + routing-switch + ip-fetch + tor-switch + ai-cmd

Troubleshooting patterns: - Recurring DNS leaks: Check DNS server config, VPN DNS settings, NetworkManager - Low security score: Run sec-harden, check each component with --verbose - Network instability: Check routing, VPN server health, Tor status - Performance issues: Use --category optimization for tuning suggestions


Scenario 7: Monitoring AI System Health

ai-monitor can track the health of all AI engine tiers and detect issues with ONNX classifier, Mistral.rs, and model availability.

AI Engine Health Monitoring

# Check AI engine tier availability
ai-monitor suggestions --category ai-health

# Expected output:
AI Health Suggestions:
┌────────────────────────────────────────────────────┐
 [WARNING] ONNX model not loaded                       Reason: distilbert-intent model missing             Impact: FAST PATH disabled, using TF-IDF only       Fix: sudo ai-trainer download-model                                                                   [INFO] Mistral.rs not configured                     Reason: No GGUF model found in ./models/            Impact: SLOW PATH using fallback engines            Fix: sudo ai-trainer download-model --llm default│
                                                     [LOW] Claude CLI not installed                        Reason: claude command not found                    Impact: Tier 6 unavailable (opt-in only)           Fix: Install Claude CLI (optional)               └────────────────────────────────────────────────────┘

# Execute suggested fixes
sudo ai-trainer download-model
sudo ai-trainer download-model --llm default

# Mark suggestions as resolved
ai-monitor suggestions --resolve 1
ai-monitor suggestions --resolve 2

# Verify all AI tiers are healthy
ai-monitor status --verbose --json | jq '.ai_health'

ONNX Classifier Health Check

# Monitor ONNX classifier status
ai-monitor watch --focus onnx-health

# Expected output (monitoring loop):
[14:23:11] ONNX Classifier:  Healthy
  Model:      distilbert-intent-v1.0.0
  Intents:    12 categories
  Avg Inference: 4.2ms
  Accuracy:   94.2%
  Loaded:     Yes

[14:24:11] ONNX Classifier:  Degraded
  Warning:    High inference time (12.3ms)
  Suggestion: Restart ai-cmd service
  Fix:        systemctl restart ai-cmd

[14:25:11] ONNX Classifier:  Failed
  Error:      Model file corrupted
  Impact:     FAST PATH disabled
  Fix:        sudo ai-trainer download-model --force

# Stop monitoring with Ctrl+C

AI Policy Integrity Monitoring

# Monitor AI policy file integrity
ai-monitor suggestions --category policy-health

# Expected output:
AI Policy Health:
┌────────────────────────────────────────────────────┐
 [HIGH] AI policy file signature invalid               Reason: Policy file modified without re-signing     Impact: AI routing using default fallback policy    Fix: sudo ai-learner learn --output-policy                                                            [MEDIUM] Policy thresholds suboptimal                 Reason: Low confidence queries being blocked        Impact: 12% of queries failing policy check         Fix: Regenerate policy from learning data           Command: sudo ai-learner learn --output-policy                                                        [INFO] Policy version outdated                        Current:  0.9.8                                     Latest:   1.0.0                                     Fix: Update policy file                          └────────────────────────────────────────────────────┘

# Fix policy integrity
sudo ai-learner learn --output-policy

# Verify policy health
ai-admin diagnostics --check-policy

# Expected output:
Policy Integrity Check:
   File exists: results/ai-policy.json
   Valid JSON structure
   Signature verification: PASS
   Schema validation: PASS
   Threshold ranges: VALID (0.00-1.00)
   Tool allowlist: 9 binaries
   Version: 1.0.0 (up-to-date)
   Risk mode: safe

Model Availability Monitoring

# Monitor all AI model files
ai-monitor watch --focus model-health

# Expected output (monitoring loop):
[14:30:15] AI Models Health Check
────────────────────────────────────────────
ONNX Models:
   distilbert-intent-v1.0.0.onnx (84.3 MB)
   vocab.txt (226 KB)
   model-config.json (1.2 KB)

Mistral.rs Models:
   Qwen2.5-3B-Instruct-Q4_K_M.gguf (1.8 GB)
   Model loaded in memory: Yes
   Inference ready: Yes

Legacy Models:
   llama-cpp: Not configured (deprecated)

Cloud Engines:
   Ollama: Not running
   Claude CLI: Not installed

Suggestions:
   Install Ollama for GenAI provider (optional)
   Install Claude CLI for expert analysis (opt-in)

[14:31:15]  WARNING: Disk space low (8.2 GB free)
  Impact: Cannot download additional models
  Fix: Clean up old files or expand storage

# Generate detailed model health report
ai-monitor suggestions --category model-health --json > model-health-report.json

AI Performance Degradation Detection

# Monitor AI inference performance over time
ai-monitor watch --focus ai-performance

# Expected output (monitoring loop):
[14:35:20] AI Performance Metrics
────────────────────────────────────────────
FAST PATH (ONNX):
  Avg Inference:  4.8ms   Normal (target: <10ms)
  P95 Latency:    8.2ms   Normal
  Success Rate:   98.4%   Healthy
  Query Volume:   1,247 queries/hour

SLOW PATH (Mistral.rs):
  Avg Inference:  210ms   Normal (target: <500ms)
  P95 Latency:    380ms   Normal
  Success Rate:   96.1%   Healthy
  Query Volume:   142 queries/hour

[14:36:20]  PERFORMANCE DEGRADATION DETECTED
  Component:      ONNX Classifier
  Issue:          P95 latency increased to 24.5ms
  Baseline:       8.2ms (3x slower)
  Impact:         FAST PATH performance degraded
  Suggestions:
     Check system load (CPU/memory)
     Restart ai-cmd service
     Verify model file integrity

# Fix performance issues
systemctl restart ai-cmd
ai-admin diagnostics --check-models
ai-monitor suggestions --resolve 1

Automated AI Health Checks with ai-scheduler

# Schedule periodic AI health monitoring
ai-scheduler add --name "ai-health-check" \
  --command "ai-admin diagnostics --check-models --check-policy" \
  --cron "0 */6 * * *"

# Schedule ONNX classifier verification
ai-scheduler add --name "onnx-verify" \
  --command "ai-cmd tiers --json | jq '.onnx_classifier.loaded'" \
  --cron "*/30 * * * *"

# Schedule model integrity check
ai-scheduler add --name "model-integrity" \
  --command "ai-admin diagnostics --check-models" \
  --cron "0 3 * * *"

# Verify scheduled AI health tasks
ai-scheduler list | grep "ai-\|onnx-\|model-"

# Expected output:
ai-health-check    | 0 */6 * * *   | Active | ai-admin diagnostics
onnx-verify        | */30 * * * *  | Active | ai-cmd tiers --json
model-integrity    | 0 3 * * *     | Active | ai-admin diagnostics

AI Health Summary Report

# Generate comprehensive AI health report
ai-monitor suggestions --category ai-health --json | jq '.' > ai-health-summary.json

# Example report content:
{
  "timestamp": "2026-02-09T14:40:15Z",
  "overall_status": "healthy",
  "components": {
    "onnx_classifier": {
      "status": "healthy",
      "model": "distilbert-intent-v1.0.0",
      "accuracy": 0.942,
      "avg_inference_ms": 4.8,
      "uptime_hours": 72.4
    },
    "mistral_llm": {
      "status": "healthy",
      "model": "Qwen2.5-3B-Instruct-Q4_K_M.gguf",
      "avg_inference_ms": 210,
      "memory_usage_mb": 2340
    },
    "ai_policy": {
      "status": "healthy",
      "version": "1.0.0",
      "signature": "valid",
      "last_updated": "2026-02-09T08:15:32Z"
    }
  },
  "suggestions": [],
  "metrics": {
    "fast_path_queries": 1247,
    "slow_path_queries": 142,
    "failed_queries": 3,
    "avg_confidence": 0.87
  }
}

# View human-readable summary
ai-monitor status --verbose | grep -A20 "AI Health"

# Expected output:
AI Health Summary:
────────────────────────────────────────────
Overall Status:       Healthy
ONNX Classifier:      Active (4.8ms avg)
Mistral.rs LLM:       Active (210ms avg)
AI Policy:            Valid (v1.0.0)
Model Integrity:      All models valid
Disk Space:           28.4 GB free
Active Issues:       0
Resolved Issues:     12 (last 7 days)

Cross-binary workflow: ai-monitor + ai-cmd + ai-trainer + ai-admin + ai-learner + ai-scheduler

AI Health Monitoring Best Practices: - ✓ Check AI health daily with ai-monitor suggestions --category ai-health - ✓ Schedule periodic model integrity checks with ai-scheduler - ✓ Regenerate AI policy after major learning cycles - ✓ Monitor ONNX classifier inference time (should be <10ms) - ✓ Verify policy signature after manual edits - ✓ Ensure sufficient disk space for model files (10GB+ free) - ✗ Don't ignore model integrity warnings - ✗ Don't run with corrupted ONNX classifier (degrades to TF-IDF)



Troubleshooting

Problem Cause Solution
Daemon won't start Port conflict or permissions Run with --foreground to see errors; check sudo
No suggestions generated No issues detected or monitor just started Wait for a full check cycle (30-60s); check ai-monitor status
High CPU usage Check intervals too aggressive Increase check intervals in configuration
Missing AI tier health data Optional tiers not installed Install ONNX/Mistral.rs models to enable tier health monitoring
Stale suggestions Monitor not running Verify daemon is active: ai-monitor status